25 research outputs found

    Towards the statistical construction of hybrid development methods

    Get PDF
    Hardly any software development process is used as prescribed by authors or standards. Regardless of company size or industry sector, a majority of project teams and companies use hybrid development methods (short: hybrid methods) that combine different development methods and practices. Even though such hybrid methods are highly individualized, a common understanding of how to systematically construct synergetic practices is missing. In this article, we make a first step towards a statistical construction procedure for hybrid methods. Grounded in 1467 data points from a large‐scale practitioner survey, we study the question: What are hybrid methods made of and how can they be systematically constructed? Our findings show that only eight methods and few practices build the core of modern software development. Using an 85% agreement level in the participants\u27 selections, we provide examples illustrating how hybrid methods can be characterized by the practices they are made of. Furthermore, using this characterization, we develop an initial construction procedure, which allows for defining a method frame and enriching it incrementally to devise a hybrid method using ranked sets of practice

    Hybrid Software Development Approaches in Practice: A European Perspective

    Get PDF
    Agile and traditional development approaches are used in combination in todays software development. To improve the understanding and to provide better guidance for selecting appropriate development approaches, it is important to analyze such combinations in practice. Results obtained from an online survey strongly confirm that hybrid development approaches are widely used in industry. Our results show that hybrid development approaches: (i) have become reality for nearly all companies; (ii) are applied to specific projects even in the presence of company-wide policies for process usage; (iii) are neither planned nor designed but emerge from the evolution of different work practices; and, (iv) are consistently used regardless of company size or industry secto

    Determining Context Factors for Hybrid Development Methods with Trained Models

    Get PDF
    Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. Every project is unique and, thus, many context factors have to be considered. Recent research took some initial steps towards statistically constructing hybrid development methods, yet, paid little attention to the peculiarities of context factors influencing method and practice selection. In this paper, we utilize exploratory factor analysis and logistic regression analysis to learn such context factors and to identify methods that are correlated with these factors. Our analysis is based on 829 data points from the HELENA dataset. We provide five base clusters of methods consisting of up to 10 methods that lay the foundation for devising hybrid development methods. The analysis of the five clusters using trained models reveals only a few context factors, e.g., project/product size and target application domain, that seem to significantly influence the selection of methods. An extended descriptive analysis of these practices in the context of the identified method clusters also suggests a consolidation of the relevant practice sets used in specific project contexts

    Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers

    Get PDF
    Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%

    Using measurement and simulation for understanding distributed development processes in the cloud

    No full text
    Organizations increasingly develop software in a distributed manner. The Cloud provides an environment to create and maintain software-based products and services. Currently, it is widely unknown which software processes are suited for Cloud-based development and what their effects in specific contexts are. This paper presents a process simulation to study distributed development in the Cloud. We contribute a simulation model, which helps analyzing different project parameters and their impact on projects carried out in the Cloud. The simulator helps reproducing activities, developers, issues and events in the project, and it generates statistics, e.g., on throughput, total time, and lead and cycle time. The aim of this simulation model is thus to analyze the tradeoffs regarding throughput, total time, project size, and team size. Furthermore, the modified simulation model aims to help project managers select the most suitable planning alternative. Based on observed projects in Finland and Spain, we simulated a distributed project using artificial and real data. Particularly, we studied the variables project size, team size, throughput, and total project duration. A comparison of the real project data with the results obtained from the simulation shows the simulation producing results close to the real data, and we could successfully replicate a distributed software project. By improving the understanding of distributed development processes, our simulation model thus supports project managers in their decision-making
    corecore